

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/33 May/June 2016

Paper 3 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable) AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid) BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear) CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed) CWO Correct Working Only – often written by a "fortuitous" answer ISW Ignore Subsequent Working MR Misread PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Ρ	age 4		Syllabus	Paper
		Cambridge International A Level – May/June 2016	9709	33
1		<i>HER</i> : State or imply non-modular inequality $(2(x-2))^2 > (3x+1)^2$, or correspondent	nding quadrat	ic
	-	ation, or pair of linear equations $2(x-2) = \pm (3x+1)$		B1
		te reasonable solution attempt at a 3-term quadratic, or solve two linear equation sin aritigal values $y = 5$ and $y = 3$	ns for <i>x</i>	M1 A1
		ain critical values $x = -5$ and $x = \frac{3}{5}$		
	Stat	e final answer $-5 < x < \frac{3}{5}$		A1
		Obtain critical value $x = -5$ from a graphical method, or by inspection, or by solution or inequality	olving a linea	r (B1
	-	ain critical value $x = \frac{3}{5}$ similarly		B2
	Stat	e final answer $-5 < x < \frac{3}{5}$		B1)
		not condone \leq for $<$.]		[4]
2		State on imply $u \ln 2$ (2, u) ln 4		B1
2	(i)	State or imply $y \ln 3 = (2 - x) \ln 4$ State that this is of the form $ay = bx + c$ and thus a straight line, or equivalent		B1 B1
		State gradient is $-\frac{\ln 4}{\ln 3}$, or exact equivalent		B1
		State gradient is $-\frac{1}{\ln 3}$, of exact equivalent		
				[3]
	(ii)	Substitute $y = 2x$ and solve for x, using a log law correctly at least once		M1
		Obtain answer $x = \ln 4 / \ln 6$, or exact equivalent		A1
				[2]
3	(i)	State answer $R = 3$		B1
		Use trig formula to find Obtain $\alpha = 41.81^{\circ}$ with no errors seen		M1 A1
				[3]
	<i>(</i> • •)			n A
	(ii)	Evaluate $\cos^{-1}(0.4)$ to at least 1 d.p. (66.42° to 2 d.p.) Carry out an appropriate method to find a value of <i>x</i> in the given range		B1√ M1
		Obtain answer 216.5° only		A1
		[Ignore answers outside the given interval.]		[3]
		dx		
4	(i)	State $\frac{dx}{dt} = 1 - \sin t$		B 1
		Use chain rule to find the derivative of y		M1
		Obtain $\frac{dy}{dt} = \frac{\cos t}{1 + \sin t}$, or equivalent		A1
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1
		Obtain the given answer correctly		A1
				[5]
	(jii)	State or imply $t = \cos^{-1}(\frac{1}{3})$		B1
	(II)	State of hippy $t = \cos^{-1}\left(\frac{1}{3}\right)$ Obtain answers $x = 1.56$ and $x = -0.898$		B1 + B1
				[3]

Ρ	age :		Syllabus	Paper
		Cambridge International A Level – May/June 2016	9709	33
5	Son	arate variables and make reasonable attempt at integration of either integral		M1
5	-	ain term $\frac{1}{2}e^{2y}$		B1
		Pythagoras		M1
		ain terms $\tan x - x$		A1
	Eva	luate a constant or use $x = 0$, $y = 0$ as limits in a solution containing terms		
	ae^{\pm}	a^{2y} and $b \tan x$, $(ab \neq 0)$		M1
		ain correct solution in any form, e.g. $\frac{1}{2}e^{2y} = \tan x - x + \frac{1}{2}$		A1
	Set.	$x = \frac{1}{4}\pi$ and use correct method to solve an equation of the form $e^{\pm 2y} = a$ or $e^{\pm y} = a$	= a, where	
	<i>a</i> >	0		M1
	Obt	ain answer $y = 0.179$		A1
				[8]
6	(i)	Use the product rule		M1
U	(1)	Obtain correct derivative in any form		A1
		Equate 2-term derivative to zero and obtain the given answer correctly		A1
				[3]
	(ii)	Use calculations to consider the sign of a relevant expression at $p = 2$ and $p = 2$	2.5, or	
		compare values of relevant expressions at $p=2$ and $p=2.5$		M1
		Complete the argument correctly with correct calculated values		A1 [2]
				[-]
	(iii)	Use the iterative formula correctly at least once		M1
		Obtain final answer 2.15 Show sufficient iterations to 4 d.p. to justify 2.15 to 2 d.p., or show there is a si	on change	A1
		in the interval $(2.145, 2.155)$	gii chunge	A1
				[3]
7	(i)	State or imply $du = 2x dx$, or equivalent		B1
		Substitute for <i>x</i> and d <i>x</i> throughout Reduce to the given form and justify the change in limits		M1 A1
		requee to the given form and justify the change in minus		[3]
	(ii)	Convert integrand to a sum of integrable terms and attempt integration		M1
		Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent		A1 + A1
		(deduct A1 for each error or omission)		
		Substitute limits in an integral containing two terms of the form $a \ln u$ and bu^{-2}	2	M1
		Obtain answer $\frac{1}{2}\ln 2 - \frac{5}{16}$, exact simplified equivalent		A1
		2 10 r r r r		[5]
				[-]

Ρ	age 6	Mark Scheme	Syllabus	Paper
	<u> </u>	Cambridge International A Level – May/June 2016	9709	33
8	(i)	State a correct equation for <i>AB</i> in any form, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} + 2\mathbf{k})$, or Equate at least two pairs of components of <i>AB</i> and <i>l</i> and solve for λ or for μ Obtain correct answer for λ or for μ , e.g. $\lambda = -1$ or $\mu = 2$ Show that not all three equations are not satisfied and that the lines do not inter		B1 M1 A1 [4]
	(ii)	<i>EITHER</i> : Find \overrightarrow{AP} (or \overrightarrow{PA}) for a general point <i>P</i> on <i>l</i> , e.g. $(1 - \mu)\mathbf{i} + (-3 + 2\mu)\mathbf{j} + Calculate the scalar product of \overrightarrow{AP} and a direction vector for l and equate to zer Solve and obtain \mu = \frac{3}{2}Carry out a method to calculate AP when \mu = \frac{3}{2}$		B1 M1 A1 M1
		Obtain the given answer $\frac{1}{\sqrt{2}}$ correctly		A1
		OR 1:Find \overrightarrow{AP} (or \overrightarrow{PA}) for a general point P on l		(B1
		Use correct method to express AP^2 (or AP) in terms of μ		M1
		Obtain a correct expression in any form, e.g. $(1 - \mu)^2 + (-3 + 2\mu)^2 + (-2 + \mu)^2$		A1
		Carry out a complete method for finding its minimum Obtain the given answer correctly		M1 A1)
		<i>OR</i> 2:Calling $(2, -2, -1)$ <i>C</i> , state \overrightarrow{AC} (or \overrightarrow{CA}) in component form, e.g. $\mathbf{i} - 3\mathbf{j} - 2\mathbf{i}$	K	(B 1
		Use a scalar product to find the projection of \overrightarrow{AC} (or \overrightarrow{CA}) on l		M1
		Obtain correct answer in any form, e.g. $\frac{9}{\sqrt{6}}$		A1
		Use Pythagoras to find the perpendicular Obtain the given answer correctly		M1 A1)
		OR 3:State \overrightarrow{AC} (or \overrightarrow{CA}) in component form		(B 1
		Calculate vector product of \overrightarrow{AC} and a direction vector for <i>l</i> , e.g. $(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \times (\mathbf{i} - 3\mathbf{k} - 2\mathbf{k}) \times (\mathbf{i} - 3\mathbf{k} - 2\mathbf{k}$	$(-\mathbf{i}+2\mathbf{j}+\mathbf{k})$	M1
		Obtain correct answer in any form, e.g. $\mathbf{i} + \mathbf{j} - \mathbf{k}$		A1
		Divide modulus of the product by that of the direction vector Obtain the given answer correctly		M1 A1) [5]
9	(i)	<i>EITHER</i> : Multiply numerator and denominator of $\frac{u}{v}$ by 2 + i, or equivalent		M1
		Simplify the numerator to $-5 + 5i$ or denominator to 5 Obtain final answer $-1 + I$		A1 A1
		<i>OR</i> : Obtain two equations in x and y and solve for x or for y Obtain $x = -1$ or $y = 1$ Obtain final answer $-1 + I$		(M1 A1 A1) [3]
	(ii)	Obtain $u + v = 1 + 2i$ In an Argand diagram show points A, B, C representing u, v and $u + v$ respective State that OB and AC are parallel State that $OB = AC$	vely	B1 B1√ [№] B1 [4]

Pa	age 7	Mark Scheme	Syllabus	Paper
		Cambridge International A Level – May/June 2016	9709	33
	(iii)	Carry out an appropriate method for finding angle <i>AOB</i> , e.g. find $\arg(u / v)$ Show sufficient working to justify the given answer $\frac{3}{4}\pi$		M1 A1
				[2]
10	(i)	State or imply the form $\frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$		B1
		Use a correct method to determine a constant		M1
		Obtain one of the values $A = -3$, $B = 1$, $C = 2$		A1
		Obtain a second value		A1
		Obtain the third value		A1
		[Mark the form $\frac{A}{x+3} + \frac{Dx+E}{(x-1)^2}$, where $A = -3$, $D = 1$, $E = 1$, B1M1A1A1A1 a	s above.]	[5]
	(ii)	Use a correct method to find the first two terms of the expansion of $(x+3)^{-1}$, (2)	$1+\tfrac{1}{3}x)^{-1},$	
		$(x-1)^{-1}$, $(1-x)^{-1}$, $(x-1)^{-2}$, or $(1-x)^{-2}$		M1
		Obtain correct unsimplified expressions up to the term in x^2 of each partial frac	tion $A1\sqrt{+}$	A1√ + A1√

A1 [5]

Obtain final answer $\frac{10}{3}x + \frac{44}{9}x^2$, or equivalent